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Abstract

Mitogen-activated protein kinases (MAPKs) are ubi-

quitous phosphorylation enzymes involved in signal

transduction, gene expression and activation of

diverse cytoskeletal proteins. MAPKs participate in

the regulation of a broad range of crucial cellular pro-

cesses including cell survival, division, polarization,

stress responses, and metabolism. Phosphorylation

of cytoskeletal proteins usually results in the re-

arrangement of cytoskeletal arrays leading to mor-

phological changes and cell polarization. On the

other hand, some cytoskeletal motor proteins, such

as kinesins, could activate MAPK members and par-

ticipate in signal delivery to the proper cellular des-

tination (e.g. during cell division). Moreover, changes

in the integrity of cytoskeletal elements have direct

impacts on MAPK activity. Recent evidence suggests

that there is bi-directional signalling between MAPK

cascades and cytoskeleton. The focus here is on this

cross-talk between MAPK signalling and the cytoske-

leton in various eukaryotic systems including yeast,

plants, and mammals and a role is proposed for

MAPKs as sensors monitoring the cytoskeleton-

dependent balance of forces within the cell.

Key words: Actin ®laments, cytoskeleton, kinesin,

microtubules, mitogen-activated protein kinases, signalling,

tip-growth.

Introduction

Multicellular organisms acquire their form by control over
spatial and temporal patterns of cell division and expan-
sion. For both cycling and differentiating plant cells,
signalling to and through a dynamic cytoskeleton as well
as the precise regulation of vesicular traf®cking, namely
exo and endocytosis, are absolutely crucial for the proper
assembly and positioning of cytokinetic cell plates and for
the maintenance of cell polarity, respectively. Moreover, a
dynamic cytoskeleton and vesicle-based membrane traf®c
are essential for intra and intercellular signalling of
multicellular organisms (Mathur and HuÈlskamp, 2002;
Wasteneys and Galway, 2003). Plants are sessile organ-
isms that had to develop strategies to adapt rapidly to
changes in environmental conditions. Consequently, mol-
ecular components regulating signalling mediated via the
cytoskeleton have evolved in plants in order to allow
environment-dependent cell-to-cell communication and
adaptation to stress.

During the last decade, it was demonstrated that sensing
of the environment, via mitogen-activated protein kinase
(MAPK) cascades, is involved in the regulation of
cytoskeletal rearrangements. Most of these rearrangements
are achieved via MAPK-mediated phosphorylation of
target cytoskeleton-associated proteins. On the other
hand, both stimulated and stressed cells use the cytoske-
leton as a sensor for changes during cell division or
differentiation resulting in the activation of MAPK
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signalling pathways (Irigoyen et al., 1997; Gachet et al.,
2001). Interestingly, in this respect, cytochalasin D induces
in MCF-7 cells newly formed actin aggregates which
associate with endosomal marker proteins such as Rab5,
paxilin, transferin, and active MAPKs (Mortensen and
Larsson, 2003). Moreover, the neuronal cytoskeleton was
also identi®ed to serve as a track to deliver signalling
endosomes to the proper locations, for example, from
synapse towards the nucleus (McPherson et al., 2001).
Plants and animals alike evolved proteins for calcium-
mediated cell-to-cell signalling and regulated exo- and
endocytosis. Animal proteins such as annexins, copins, and
synaptotagmins (also present in plant but not in yeast cells)
directly couple vesicle traf®cking to the actin cytoskeleton
(Clark et al., 2001; Craxton, 2001; Tomsig and Creutz,
2002).

In this review, recent major studies devoted to the cross-
talk between the cytoskeleton and MAPKs in mammals
and yeast are summarized and discussed. In addition, the
current models are compared with recent discoveries in
plants linking cell shape, cell division and morphogenesis
to the cytoskeleton and MAPK cascades.

Organization of MAPK cascades

MAPKs are one of the best characterized family of
signalling molecules in higher plants (Hirt, 2000a; Jonak
et al., 2002). At the biochemical level, there are two
possible ways how MAPKs can regulate the activity of
other proteins. First, an activated MAPK can phosphor-
ylate, and thereby regulate, the function of nuclear
transcription factors or cytoplasmic cytoskeletal
components and/or other kinases. Second, other regulatory
proteins can in¯uence MAPK signalling through direct
physical interaction with MAP kinase components (with or
without ensuing phosphorylation).

Compared with other eukaryotes, plants are equipped
with much higher numbers of genes encoding MAPK
signalling components. Yeast has six and mammals 13
different MAPKs (Hirt, 2000b; Meskiene and Hirt, 2000).
In Arabidopsis, there are at least 20 MAPK, 10 MAPKK
and 60 MAPKKK genes (MAPK group, 2002). In all
eukaryotic cells, MAPKs are universal signal mediators of
diverse extracellular signals. MAPKs belong to the serine/
threonine class of protein kinases and are involved in a host
of crucial cellular responses leading to cell survival,
division or differentiation (Garrington and Johnson, 1999).
MAPK signalling pathways are built up from dynamic
protein complexes involving MAPK modules composed of
three kinases organized in a cascade (Fig. 1). In MAPK
modules, the MAPKKK, which is also a serine/threonine
kinase, phosphorylates MAPKKs which, in turn, perform T
and Y dual phosphorylation of MAPKs. In several cases,
this basic module is held together through the scaffolding
properties of some MAPKKs (e.g. Pbs2 in yeast),

MAPKKKs (e.g. MEKK1 in mammals) or speci®c scaf-
fold proteins (e.g. MP1 and b-arrestins in mammals)
(Fig. 1). Apart from scaffolded MAPK modules, other
upstream activators, including MAPKKKKs, protein
kinase C, small GTP-ases (Rho, Cdc42, Rac; Rop in
plants) and receptor kinases, are important for organizing
signalling cascades (Fig. 1). Some of these proteins might
also contribute to form signalling complexes of MAPK
components with other pathways. Phosphorylation of
MAPKs in many cases results in subcellular translocation
and subsequent activation of divergent substrate proteins,
including transcription factors, other kinases and cyto-
skeletal proteins. In plants, MAPKs participate substan-
tially in transmitting biotic and abiotic stress, in the control
of cell division and developmental processes regulated by
hormones and other biologically active compounds, as
well as in the plant response to diverse pathogens
(Meskiene and Hirt, 2000; Jonak et al., 2002). So far,
almost nothing is known about plant scaffolds, upstream
regulators of MAPK modules and about molecular targets
of MAPKs (Asai et al., 2002; Nishihama et al., 2002;
SÏamaj et al., 2002).

Generally, there is considerable similarity in MAPK
cascades between mammalian, yeast and plant cells
indicating the ubiquitous nature of this type of signalling
mechanism (Fig. 1). Interestingly, all 20 plant MAPKs
have highest similarity to the mammalian ERK (extra-
cellular signal-regulated kinase) and no plant homologues
of the mammalian p38 and JNK (c-Jun NH2-terminal
kinase) MAPK subfamilies have been found (Hirt, 2000a).
Besides activation by upstream kinases, the activity and
biological output of MAPK signalling pathways is regu-
lated by direct interaction with scaffold proteins and
phosphatases. Scaffold proteins are believed to bring
speci®city into MAPK signalling pathways. Tight control
of the subcellular assembly of MAPK components into
multiprotein complexes has a signi®cant impact on
signalling and is achieved by precise subcellular targeting
and recruitment of MAPK modules to various membra-
neous compartments, for example, the plasma membrane
or signalling endosomes. Phosphatases are responsible for
the resetting of signalling pathways by dephosphorylation
and inactivation of MAPKs (Meskiene et al., 1998). In
addition, phosphatases can also tether MAPKs in the
cytoplasm or within the nucleus (Mattison et al., 1999),
leading to signal termination (Volmat et al., 2001).
Importantly, MAPKs, scaffold proteins and phosphatases
can shuttle between the nucleus and the cytoplasm.

MAPK signalling and the microtubular
cytoskeleton in dividing cells

An association of MAPKs with the microtubular cyto-
skeleton was found in several mammalian cell types
including neurons and oocytes. Here, MAPKs were either
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co-localized with microtubules (Fiore et al., 1993; Verlhac
et al., 1993) or associated with in vitro polymerized
microtubules (Mandelkow et al., 1992). Intriguingly, in
dividing ®broblast cells, one-third of the total pool of
MAPK was directly associated with microtubules as
revealed by immunolocalization and biochemical studies
(Reszka et al., 1995). Microtubule drugs are widely used in
cancer chemotherapy due to their cytostatic effects, and
inhibitors of MAPK pathways, such as UO 126 (which
speci®cally blocks the ERK pathway), are also under
consideration. In human cancer cell lines, paclitaxel and

other microtubule inhibitors including vinblastine, vincris-
tine and colchicine induce the activation of diverse
MAPKs including ERK, JNK and p38 (McDaid and
Horwitz, 2001). In KB-3 cells, for example, these drugs
caused signi®cant activation of JNK with concomitant
inactivation of ERK and a reduction in basal p38 MAPK
activity, indicating that these three MAPK signalling
pathways are co-ordinated during microtubule disruption
(Stone and Chambers, 2000). In pig oocytes, activated
ERK was localized to the mitotic spindle using an antibody
which recognizes phosphorylated ERK. This spindle-

Fig. 1. Scheme of distinct MAPK signalling pathways in mammals, yeast and plants. Note the general similarity in the organization of MAPK
pathways in all three eukaryotic systems. MAPKKK, mitogen activated protein kinase kinase kinase; MAPKK, mitogen activated protein kinase
kinase; MAPK, mitogen activated protein kinase. Scaffolding proteins (depicted in dark blue) are integrating signalling pathways.

Fig. 2. Immuno¯uorescence co-localization of microtubules (green, labelled with FITC) and stress-induced MAP kinase SIMK (red, labelled with
Texas Red) after taxol treatment of meristematic root cells of Medicago sativa. Note the colocalization (yellow, indicated by arrows) of mitotic
microtubules (including pre-prophase bands, phragmoplasts and spindles) with SIMK. Cortical microtubules do not colocalize with SIMK.
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associated active ERK was proposed to play an important
role in meiosis during spindle elongation and cleavage
furrow formation (Lee et al., 2000).

An association of JNK and its upstream MAPKKK
MLK2 with microtubules and the microtubular motor
kinesin KIF3 was previously demonstrated in mammalian
cells (Nagata et al., 1998; Zecevic et al., 1998). Recently,
JIP scaffolding proteins, which interact with components
of the JNK signalling pathway, were identi®ed as linkers
between kinesins and their vesicular cargoes (Verhey et al.,
2001).

MAPKs also associate with microtubules in plants. In
dividing plant cells of Medicago roots, stress-induced
MAP kinase (SIMK) was localized to microtubular arrays
such as pre-prophase bands (PPBs) and phragmoplasts
upon salt stress (BalusÏka et al., 2000a). This co-localiza-
tion of SIMK with mitotic microtubules (PPBs, phragmo-
plasts and spindles) in planta could be enhanced by the
stabilization of microtubules by taxol (Fig. 2). These data
indicate that plant mitotic microtubules can interact with
SIMK in stressed cells. Moreover, both cold treatment and
disruption of the microtubular cytoskeleton by oryzalin
activated another stress activated MAP kinase (SAMK) in
dividing alfalfa suspension cultured cells (Sangwan et al.,
2002). In addition, other plant MAPKs including alfalfa
MMK3 and tobacco NtF6 have been localized to
phragmoplasts (Calderini et al., 1998; BoÈgre et al.,
1999), a microtubule-based cytoskeletal structure driving
cytokinesis of plant cells. Recently, it was shown that the
tobacco MAPK kinase kinase NPK1 is essential for
cytokinetic cell plate formation, which starts in the cell
centre and progresses towards the cell periphery
(Nishihama et al., 2001). This kinase binds speci®cally
to the microtubule-associated kinesin NACK1 that is
necessary for the activation and transport of NPK1 to the
equatorial region of phragmoplasts (Nishihama et al.,
2002). NPK1 possesses a functional nuclear localization
sequence (NLS) within the NACK1-binding domain. In
resting cells, this NLS is active and is targeting NPK1 to
nuclei of non-dividing interphase cells (Ishikawa et al.,
2002). In summary, a number of localization and func-
tional studies in mammals and plants indicate that MAPKs
can interact with components of the microtubular cytoske-
leton, especially in dividing cells. Yet, only in plants was it
demonstrated that kinesins in fact activate MAPKKK and
subsequently transport such activated kinase to the proper
cellular destination (Nishihama et al., 2002).

MAPK signalling and the actin cytoskeleton

MAPKs and actin in mammals

In mammalian cells, disintegration of the actin cytoskele-
ton by cytochalasin inhibits the activation of two MAPKs,
namely ERK and p38 (Tsakiridis et al., 1998) indicating

that the actin cytoskeleton plays a role in MAPK
signalling. Upon stimulation, ERK binds actin and actin-
binding proteins, such as calponin and a-actinin
(Leinweber et al., 1999). Moreover, activated ERK co-
localizes with actin bundles in stimulated cells (Khalil
et al., 1995) and translocates from the cell cortex to actin-
rich regions composed of thin actin ®laments (Parker et al.,
1998). Intact actin ®laments are required for the propaga-
tion of insulin signals and the activation of ERK
(Tsakiridis et al., 1997). In addition, cortical actin
®laments are also necessary for integrin/®bronectin-medi-
ated anchorage of ®broblasts and signalling via ERK upon
growth factor stimulation. It was shown that a limited
degree of adhesion-mediated cytoskeletal organization
regulated by Cdc42 is required for ERK activation by a
growth factor (Aplin and Juliano, 1999). Furthermore,
actin bundle formation stimulated by collagen, an extra-
cellular matrix molecule, involves ERK activation
(Svoboda et al., 1999). ERK signalling triggered by
lysophosphatidic acid (Della Rocca et al., 1999) also
requires an intact actin cytoskeleton while cytoskeleton
disruption by NO prevents stretch-induced ERK activation
(Ingram et al., 2000). In addition, cytoskeletal reorganiza-
tion caused by the actin drug, cytochalasin D, activates the
ERK pathway and leads to activation of speci®c genes
(Irigoyen et al., 1997).

The mammalian p38 is involved in the recovery from
osmotic insult (Takekawa et al., 1997). p38 regulates actin
turnover by mediating phosphorylation of the actin cap-
ping proteins HSP25 and HSP27 belonging to the family of
small heat shock proteins (Guay et al., 1997). Non-
phosphorylated HSP25 monomers bind to the plus ends of
actin ®laments and prevent actin polymerization. Upon
phosphorylation, HSP25 can form oligomers which do not
inhibit actin polymerization any more, leading to the
stabilization of actin stress ®bres (Benndorf et al., 1994).
Overexpression of wild type and the non-phosphorylatable
mutant HSP27 resulted in remarkable changes and
remodelling of ®lamentous actin in the cell cortex which
was associated with enhanced or reduced pinocytosis,
respectively (Lavoie et al., 1993). Moreover, actin stress
®bres that are regulated by the phosphorylated status of
HSPs become thicker and more abundant in response to
hypoxia (Kayyali et al., 2002). In most recent studies, it
was shown that p38 phosphorylates MK2 (MAPKAP
kinase 2) which, in turn, activates HSP27 resulting in a
redistribution of the actin cytoskeleton in stimulated cells
(SchaÈfer et al., 1998; Kayyali et al., 2002).

Another substrate, the regulatory light chain of myosin
II, is also phosphorylated by MK2 resulting in actin-
mediated Mg-ATPase activity of myosin II (Komatsu and
Hosova, 1996). It was also shown that ERK regulates the
myosin light chain by enhancing the activity of myosin
light chain kinase (MLCK), a Ca/calmodulin-dependent
enzyme (Klemke et al., 1997), resulting in assembly of
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functional myosin motors on actin ®laments during cell
migration and contraction (Cheresh et al., 1999). An
increase in myosin light chain phosphorylation by over-
expressing a constitutively active form of smooth myosin
light chain kinase tMK increased cytoskeletal stiffness and
slowed down MAP kinase signalling (Cai et al., 1998).
Recently, it was reported that ERK phosphorylates
tropomyosin which co-localizes with actin and stress
®bres upon stimulation of ERK by H2O2 or by expression
of constitutively active MEK1 (Houle et al., 2003).
Activated tropomyosin contributes to the formation of
actin ®laments, increases cellular contractility and pro-
motes the formation of focal adhesions and membrane
blebbing.

Frabin, an actin binding protein involved in microspike
formation, interacts with actin and induces JNK signalling
through Cdc42 activation (Umikawa et al., 1999). JNK
activity is also required for proper actin dynamics and
maturation of actin-rich structures during polarization of
Drosophila epidermal cells (Kaltschmidt et al., 2002).
Using Ras mutants, which are able to disrupt the actin
cytoskeleton, it was shown that oncogenic Ras can
speci®cally target the actin cytoskeleton and activate the
MAPK pathway (Pawlak and Helfman, 2002).

Altogether, these ®ndings indicate that mammalian
MAPKs regulate not only the rearrangement of F-actin
arrays but also the activity of myosin motors and, in this
way, also acto-myosin dependent motility. Except for
MAPKs themselves, other upstream members of MAPK
pathways can also interact with components of the actin
cytoskeleton. For example, mammalian MEKK1, an
activator of ERK, p38, JNK, and NF-kB, binds to a-
actinin and localizes to actin stress ®bres and focal
adhesions (Christerson et al., 1999).

MAPKs and actin in yeast

In yeast, both the cell wall integrity and the mating
pathways are dependent on the actin cytoskeleton and
MAPK signalling. The cell wall integrity pathway is
regulated by MPK1 and is necessary for the polarization of
actin ®laments towards weakened cell wall domains
(Mazzoni et al., 1993; Zarzov et al., 1996). MPK1 mutants
show phenotypes reminiscent of actin mutants having
aberrantly distributed actin cortical spots and accumulated
secretory vesicles (Mazzoni et al., 1993).

Hog1 (high osmolarity glycerol 1) is a MAPK which
regulates the osmolarity response in budding yeast. In
addition, Hog1 is also required for the repolarization of the
actin cytoskeleton during budding and cell growth after the
recovery of yeast cells from osmotic stress (Brewster and
Gustin, 1994). Hyperosmotic stress causes rapid and
transient disassembly of the actin cytoskeleton
(Chowdhury et al., 1992) and is necessary for survival
after osmotic insult since mutations in actin and actin-
associated proteins result in increased osmosensitivity

(Botstein et al., 1997). Recently, the Ssk2p, one of the
three MAPKK kinases of the Hog1 pathway was identi®ed
to facilitate actin cytoskeleton recovery after osmotic
stress (Yuzyuk et al., 2002). An activated form of Hog1
(induced by osmotic insult or actin depolymerization by
latrunculin A) is involved in the sensing of damage to the
actin cytoskeleton and relocates from the cytoplasm to the
septin-enriched bud neck forming a complex with actin.
Moreover, Hog1 promotes reassembly of the polarized
actin cytoskeleton and resumption of the cell cycle
(Yuzyuk et al., 2002).

Bem1 of the yeast pheromone pathway interacts with the
scaffold protein Ste5, the MAPKKKK Ste20 and actin.
Mutants of Bem1 still interact with Ste5 and actin, but not
with Ste20, and cause the rearrangement of the actin
cytoskeleton during mating, leading to defective polarized
morphogenesis and shmoo formation in yeast cells (Leeuw
et al., 1995). PSK, a novel mammalian Ste20-like kinase is
able to regulate both the actin cytoskeleton and the JNK
signalling pathway (Moore et al., 2000). This kinase is
localized to vesicles and causes reduction in abundance of
actin stress ®bres.

In ®ssion yeast, a mitotic checkpoint monitors integrity
of the actin cytoskeleton and proper orientation of the
spindle which is dependent on stress-activated MAPK Sty1
(Gachet et al., 2001). The molecular target of Sty1 in this
mitotic checkpoint remains unknown.

MAPKs and actin in plants

Plants possess higher numbers of genes encoding some
cytoskeletal components, for example, there are eight actin
genes in Arabidopsis (Meagher et al., 1999). On the other
hand, plants seem to lack several actin-binding proteins
known from mammals, such as tropomyosin, vinculin,
talin, a-actinin, WASP, and many others (Hussey et al.,
2002; Meagher and Fechheimer, 2003). In plant cells,
disruption of the actin cytoskeleton by latrunculin B causes
activation of the alfalfa MAPKs SIMK and SAMK that are
involved in abiotic stress responses including osmotic, heat
and cold stress (SÏamaj et al., 2002; Sangwan et al., 2002).
Interestingly, jasplakinolide, another actin drug which
decreases actin turnover and dynamics, also activates
SIMK (SÏamaj et al., 2002) but not SAMK (Sangwan et al.,
2002). Conversely, UO126, an inhibitor of mammalian
MEK1, causes remodelling of the actin cytoskeleton in
plant cells (SÏamaj et al., 2002).

These pharmacological data indicate that MAPKs are
involved in the dynamic organization of the actin
cytoskeleton. In the activated form, MAPKs probably
bind to and regulate components of the actin cytoskeleton.
On the other hand, disturbances to the actin dynamics and
organization are sensed via MAPK pathways. These
mutual interactions highlight the importance of both
signalling components: MAPKs and the dynamic actin
cytoskeleton also in plant cells.
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Exploratory and signalling nature of actin- and
MAPK-based tip-growth

There is one common link connecting all the above
discussed examples where MAPK cascades and the actin
cytoskeleton inherently interact to drive polarity of signal-
mediated cellular expansion. This link is a highly polarized
cell growth mode, which is also known as a tip-growth,
when cells expand strictly locally at well-de®ned domains
(Hepler et al., 2001). Examples of effectively navigated
tip-growing cells can be found in all eukaryotes. In yeast,
®lamentous tip-growth is typical for nutritionally stressed
cells which start to explore their environment and for
mating when mating partners approach each other via tip-
growing projections known as shmoos (Gustin et al.,
1998). In animals and humans, the best example of tip-
growing cells are path-®nding growth cones of neurons
which navigate their growth towards relevant interacting
partners (Ming et al., 2002). In plants, there are two
distinct examples of tip-growing cells (Hepler et al., 2001).
First, pollen tubes are able rapidly to overcome large
distances by growing through female tissues in order to
®nd and fuse with fertilization-competent ovules
(Palanivelu and Preuss, 2000). Second, tip-growing root
hairs search for well-watered and oxygen-rich soil portions
to satisfy the high nutritional demands of higher plants
(Jungk, 2001). All these cells perform signal-mediated
exploratory tip-growth (Kirschner and Gerhart, 1998;
West-Eberhard, 1998) which is navigated towards well-
de®ned targets. Obviously, signals perceived at the cell
periphery are transduced towards the actin cytoskeleton
via MAPK cascades in tip-growing cells (Gustin et al.,
1998; Grewal et al., 1999; Wu et al., 2001; Adams and
Sweatt, 2002; SÏamaj et al., 2002).

Sustained activity of ERK is necessary for the initiation
of neurite growth (Marshall, 1995; Schmid et al., 2000).
Both MAPK activity and a dynamic actin cytoskeleton,
regulated by the Arp2/3 complex, are required for the
growth of axons and dendrites and chemotactic guidance
of nerve growth cones by guidance factors, such as netrin-1
or the brain-derived neurotrophic factor (Goldberg et al.,
2000; Ming et al., 2002). Yeast cells respond by wall
remodelling and ®lamentous growth when human MEK1
and ERK1 are overexpressed (Atienza et al., 2000). In
neurons, synaptic signal transfer requires vesicular traf-
®cking and vesicle-associated ®lamentous actin was
shown to play a scaffolding role for regulatory molecules
in the nerve terminal (Halpain, 2003; Sankaranarayanan
et al., 2003).

In yeast, MPK1 promotes polarized cell growth during
the formation of mating projections of haploid cells
upon pheromone treatment (Zarzov et al., 1996). During
mating, an example of cell-to-cell interaction in unicellular
yeast, the Fus3 and its upstream kinase Ste7 are located to
the tips of protruding mating projections (van Drogen et al.,

2001) which are enriched with a ®ne mesh of actin
®laments (Evangelista et al., 1997). Using ¯uorescence
recovery after photobleaching (FRAP), it was demon-
strated that Fus3 shuttles between the nucleus and the
cytoplasm independently of its phosphorylation status,
stimulation by pheromone, and interaction with Ste5 (van
Drogen et al., 2001). Kss1 is another yeast MAPK that is
involved in polar pseudohyphal growth and is induced by
an invasive search for nutrients during nitrogen starvation
(MoÈsch et al., 1996; Cook et al., 1997; Madhani et al.,
1997).

In plant pathogenic fungi, MAPKs are involved in the
formation and polar growth of both conidia and appressor-
ia (Xu and Hamer, 1996). Fungi carrying mutations in
MAPK genes are unable to form functional appressoria
resulting in the loss of pathogenicity (Xu et al., 1998; Ruiz-
Roldan et al., 2001; Kojima et al., 2002).

In plants, it was shown that the correct localization and
activity of the stress-induced MAP kinase, SIMK, depends
on the intact actin cytoskeleton in growing root hairs of
Medicago sativa (SÏamaj et al., 2002). Before the onset of
root hair formation, most of the SIMK in trichoblasts is
located in the nucleus as revealed by immunolabelling and
the in vivo localization of GFP-tagged SIMK (J SÏamaj, L
BoÈgre, H Hirt; unpublished results). During root hair
formation, SIMK becomes redistributed to growing root
hair tips possessing dense meshworks of actin ®laments
(BalusÏka et al., 2000b; SÏamaj et al., 2002). Importantly,
SIMK is present in its activated form at root hair tips. Actin
drugs which interfere with polymerization rates of F-actin,
such as latrunculin B and jasplakinolide, cause growth
inhibition and removal of both the F-actin meshwork and
SIMK from tips of root hairs (SÏamaj et al., 2002).
Latrunculin B depolymerizes F-actin by sequestering G-
actin monomers from the cellular actin pool (BalusÏka et al.,
2000b; Hepler et al., 2001; Vidali et al., 2001). For
jasplakinolide, both F-actin stabilization (Holzinger and
Meindl, 1997; Sawitzky et al., 1999; Holzinger, 2001;
SÏamaj et al., 2002) and/or disruption of F-actin arrays due
to abberant polymerization (Sawitzky et al., 1999; Ou
et al., 2002) were reported in algal and plant cells
depending most likely on the cell type and drug concen-
tration. Upon jasplakinolide treatment of root hairs, a
considerable part of SIMK co-localizes with thick actin
cables. Both actin drugs also cause the activation of SIMK
in dividing suspension cells. Plants overexpressing gain-
of-function SIMK, which is constitutively active, show a
phenotype of longer root hairs which emerge earlier than in
control plants. Inhibition of MAPK activity by the
inhibitor UO126 results in root hair growth inhibition
accompanied by the redistribution of both F-actin and
SIMK. Tip-focused activated SIMK and dynamic actin
®laments seem to be essential for sustained root hair
growth (SÏamaj et al., 2002). Moreover, recent ¯uorescence
recovery after photobleaching (FRAP) experiments

194 Samaj et al.



revealed that SIMK is undergoing shuttling between the
nucleus and the tip region of growing root hairs (J SÏamaj, L
BoÈgre, H Hirt; unpublished results). These results suggest
that SIMK might sense changes in the cytoskeleton and
participate in the control of vesicular traf®cking. These
observations also indicate that SIMK alone, or together
with other MAPKs, for example, SAMK, might be
necessary for the dynamic maintenance of the balance of
forces, which are disturbed during bulge initiation by the
local weakening of cell walls resulting in the outgrowth of
root hairs.

Are end-poles of elongating cells plant-like
synaptic domains?

Neuronal synapses remotely resemble tip-growing do-
mains via actin-dependent and calcium-regulated vesicle
traf®cking events. Synapses are de®ned as asymmetric
adhesion domains specialized for rapid cell-to-cell com-
munication (Dustin and Cooper. 2000; Dustin and Colman,
2002). Originally, this term was used exclusively for
neuronal cells. Currently, the use of this term is getting
wider and diverse cell types are considered to establish a
synaptic-type of adhesive domains specialized for cell-to-
cell communication. For instance, the term `synapse' has
been extended to other cell-to-cell contacts, including
those between neurons and muscle cells, and even between
non-neuronal cells of which the `immunological synapse'
is the best understood (Dustin and Cooper, 2000; Dustin
and Colman, 2002).

The major difference between synapses and tip growing
cells is that abundant exocytic events are fully balanced
with abundant endocytic events in the case of non-growing
synapses (Shupliakov et al., 2002). Importantly, both
MAPK and the actin cytoskeleton are essential
components of synapses (Wu et al., 2001; Adams and
Sweatt, 2002). In fact, neuronal synapses represent the
most advanced model for studies of the actin cytoskeleton
and calcium-mediated regulation of exo-and endocytosis
(Morales et al., 2000; Colicos et al., 2001; Shupliakov
et al., 2002). An actin-based cytomatrix was found to
be important for the scaffolding of regulatory signal
molecules during vesicular traf®cking in neuronal syn-
apses (Halpain, 2003; Sankaranaraynan et al., 2003).
Recently, it has been suggested that actin-enriched non-
growing end-poles of elongating plant cells bear many
similarities to neuronal synapses (BalusÏka et al., 2003a, b).
They are enriched with both actin and unconventional
myosin VIII and perform abundant recycling events of
vesicles carrying putative auxin transporters and possibly
also of auxin itself, implicating that auxin represents a
plant neurotransmitter-like growth regulator (BalusÏka
et al., 2003b).

Conclusions and perspectives

During the last decade, it has become obvious that cross-
talk between the cytoskeleton and MAPK signalling
pathways is important for controlling crucial cellular
activities, such as cell division and polarized growth.
MAPKs not only regulate the dynamic behaviour of the
cytoskeleton via phosphorylation of cytoskeleton-associ-
ated proteins, but are also activated themselves by
cytoskeletal proteins (e.g. by kinesins) and by changes in
the cytoskeletal organization. However, cytoskeletal tar-
gets of activated MAPKs are unknown in plants and only
little is known in other organisms. Since the cytoskeleton is
the major player for controlling the cellular architecture,
MAPKs should be considered as possible candidates for a
surveillance apparatus, sensing the balance of forces
within cells.

Other recent studies connect motor proteins, such as
kinesins and myosins, to MAPK signalling pathways.
While MAPKs regulate motor activity of myosins in
mammals, it still remains to be determined whether
MAPKs activate plant myosins and, eventually, use their
motor activity for targeting of MAPK complexes to proper
subcellular locations. Components of MAPK signalling
pathways associate with kinesins in mammalian and plant
cells, but it is not clear whether MAPKs can activate
kinesins. Motor proteins are also considered to be
molecular linkers between actin and microtubular cytos-
keletons and, therefore, could participate in signal transfer
between these two crucial cytoskeletal structures. Clearly,
this is only the beginning of appreciating complex cross-
talks between signalling and cytoskeletal systems and
further studies will be necessary to unveil the interplay
between signal transduction and the cytoskeleton in a
functional context.
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