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ACTIN CYTOSKELETON RELATED TO
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Abstract: Gravisensing cells (statocytes) from plant root caps are characterized by a
polar arrangement of organelles and sedimented amyloplast-based statoliths.
Immunofluorescence microscopy fails to visualize prominent actin filaments
in statocytes but indicates a highly dynamic cytoskeletal network, composed at
least of actin, myosin-like proteins and profilin, surrounding sedimented
statoliths. Experiments under microgravity demonstrated that the positioning
of statoliths depends on the external gravitational force and on endocellular
cytoskeleton-based forces exerted on their surfaces. Accepting the amyloplast-
based statolith hypothesis, these results strongly suggest that gravisensing
occurs in a close vicinity of statolith surfaces. Experiments with grass nodes
revealed transient changes of the signalling molecule IP3 already few seconds
after gravistimulation. The importance of mutants for dissecting the gravity-
related signal transduction chains is highlighted.

1. INTRODUCTION

Gravisensing belongs to the general category of mechanosensing
processes which encompass also perception of sound and pressure in
animals, and touch and osmosis in plants. The most outstanding feature of
mechanosensory perception is the extreme velocity of the process having
latencies of less than one millisecond (Kernan & Zuker, 1995). By this
characteristic, the mechanosensing process is faster than any other biological
process transforming environmental stimuli into cellular responses including
photosensing (Hargrave & McDowell, 1993). This special situation is
explained by the idea that mechanical forces might be directly transduced to
mechanosensitive ion channels of the plasma membrane (e.g. Sachs, 1997;
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Spencer et al., 1999) via cytoskeletal elements (e.g. Glogauer et al., 1998),
thereby bypassing a need for special receptor molecules (Kernan & Zuker,
1995). Root apices proved to be extremely sensitive towards extremely weak
mechanical stimuli (Monshausen & Sievers, 1998).

Gravity-oriented growth of higher plant organs, like roots, is mainly
under the control of two signal transduction chains (Volkmann & Tewinkel,
1998). The first one is initiated in specialized gravity sensing cells (known as
statocytes) where gravity-induced stimuli transform into a physiological
response (for a review see Sack, 1997). The second one ends up in cells of
the transition zone (Baluška et al., 1996) which initiates the differential cell
elongation (Zieschang & Sievers, 1991). Thus, the transition zone acts as the
target tissue which receives root cap signals transmitted from the site of
gravisensing. The transition zone cells are uniquely sensitive towards auxin
and calcium (Ishikawa & Evans, 1992, 1993) and are induced into their
differential elongation at the opposite root flanks, resulting in the gravity-
induced re-orientation of the whole root apex (Evans & Ishikawa, 1997). We
would like to highlight putative roles of the actomyosin-based cytoskeleton
at the gravisensing sites represented by amyloplast surfaces. Currently, a
large body of evidence is emerging for the involvement of diverse molecules
related to the phosphoinositide metabolism in both signal perception and
transduction (for plant cells see Munnik et al., 1998). Finally, we stress the
importance of mutants relevant for the disection and exploration of signal
transduction chains during root gravisensing.

2. SITES OF GRAVISENSING

Since the pioneering surgical experiments performed by Juniper et al.
(1966) with maize roots, the root cap is well established as site of
gravisensing for the underground parts of plants (for genetic evidence see
Tsugeki & Fedoroff, 1999). For above-ground plant organs mutants suggest
a role of endodermis as site of perception (e.g. Fukaki et al., 1998; Tasaka et
al., 1999). In the root cap centre, highly specialized columella cells are
characterized by a polar arrangement of cell organelles when the nucleus is
mainly localized at the proximal cell pole whereas amyloplasts are
sedimented mostly on cortical ER membranes at the distal pole (for review
see Volkmann & Sievers, 1979). In spite of recent controversal discussions
of ‘starchless mutants’ in relation to the first step of stimulus transformation,
it is accepted that sedimentable particles (statoliths) are involved in an
intracellular perception mechanism (for a review see Sack, 1997; for
controversal discussion compare Pickard & Ding, 1992; Staves et al.,
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1997a,b). Recently, Blancaflor et al. (1998) specified the central root cap
cells of the Arabidopsis roots as the most important gravisensing site.

Figure 1. Distributions of actin (A,B), profilin(s) (C,D) reactive to the ZmPRO5 antibody
(gift from Chris Staiger), myosin VIII (E), and myosin-like protein (F) reactive to the myosin
II antibody (Sigma, M7648) in statocytes (big stars in A, C) of alfalfa (A-D) and maize (E, F)
root apices. Note accumulation of actin, profilins, and myosin-like proteins around surfaces of
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sedimented amyloplasts (small stars in B, D, F). Myosin VIII does not accumulate around
statoliths. Asterisk in E indicates nucleus. Bar = 18 µm for A, C; and 10 µm for B, D, E, F.

Experiments using centrifuges (Wendt et al., 1987) and microgravity
(Perbal et al., 1987; for review see Perbal et al., 1997) ruled out the plasma
membrane and ER membranes as cell structures directly involved in the
process of early stimulus transformation. On the other hand, dynamic
cytoskeletal elements, especially those based on the actomyosin complex,
have recently come into discussion as sensors and mediators of various
environmental signals (for reviews see Volkmann & Baluška, 1999; Staiger,
2000). In general, actomyosin-based networks represent hot candidates for
transducing the mechanical force (e.g. Bähler, 1996; Mermall et al., 1998;
Volkmann & Baluška, 1999; Staiger, 2000) transformed at the statolith
surfaces and passed towards membranes at the cell periphery (Sievers et al.,
1989; Sievers et al., 1991). Thus, they might be implicated not only in signal
perception but also in propagation of perceived stimuli (for review see
Baluška & Hasenstein, 1997).

3. CYTOSKELETAL ELEMENTS AS A BASIS FOR
STATOLITH SHORT-RANGE MOTIONS

Sedimentation of statoliths is obviously facilitated by the specific
cytoskeletal status of root cap statocytes which differ from all other root
cells. Until now, endoplasmic microtubules (MTs) and bundles of actin
filaments (AFs) have not been observed in this unique type of root cap cells
(Baluška et al., 1997). Statolith sedimentation, however, is not just a simple
one-way process executed progressively during development. Rather, as can
be observed using high resolution video microscopy, it represents a complex
form of the endocellular motility accomplished via continuous short-range
motions (Sack et al., 1986; Volkmann et al., 1999). Dynamic statoliths occur
often in clusters (Smith et al., 1997), typically showing saltatory movements
(Sack et al., 1986). This situation has also been reported for barium sulfate-
filled statoliths in unicellular graviresponding rhizoids of the green alga
Chara (Hejnowicz & Sievers 1981). Statoliths motions are not randomized,
as it is typical for non-sedimentable amyloplasts, but are preferentially
correlated according to the direction of the gravity vector. Thus, in
developing statocytes, short-range motions of amyloplasts are progressively
channelled into directed motions which ultimately culminates in their
sedimentation. In other words, oriented gravity-dependent statolith motions
overcome the noise of their constitutive random motions (Volkmann et al.,
1999).
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Actomyosin-driven transport of cell structures and organelles, especially
of chloroplasts, is well documented for algae such as Nitella or Acetabularia
(Williamson, 1993; Menzel, 1994; Grolig & Pierson, this volume; Takagi,
this volume) as well as for ferns and higher plants (Sato et al., 1999;
Kandasamy & Meagher, 1999). Using monospecific antibodies, it can be
demonstrated that root cap cells, especially statocytes, possess a highly
specific status in comparison to cells from other root tissues concerning the
expression of actin and its related proteins, myosin and profilin (Fig. 1). In
spite of intensive studies using different immunocytological techniques,
visualization of prominent AFs in root statocytes is still lacking (for recent
literature compare Baluška & Hasenstein, 1997). In contrast, other cell types
of the root proper have been shown to be rich in filamentous actin, distinctly
organized in different cell types (Baluška et al., 1997; Vitha et al. 1997;
Vitha et al., 2000; Baluška et al., this volume; Vitha et al., this volume).
Recently, Blancaflor and Hasenstein (this volume) were able to visualize F-
actin networks within isolated statocytes of Arabidopsis roots using a special
technique combining phalloidin fluorochromes with glycerol incubation. On
the other hand, prominent F-actin cables were observed in statocytes of
coleptiles (White & Sack, 1990) and hypocotyls (Volkmann et al., 1993)
after phalloidin labelling. However, these statocytes of above-ground plant
organs are distinguished by large central vacuoles and by cytoplasmic
streaming which is driven by the actomyosin system (Grolig & Pierson, this
volume). The latter situation is completely different to cytoplasmic-rich root
cap statocytes lacking any cytoplasmic streaming. Diffuse actin signal in
root statocytes surrounds sedimented statoliths. This suggests dense, but
short, dynamic F-actin elements surrounded by abundant G-actin in these
cells (compare Fig. 1). Interestingly, if statocytes of maize and barley root
caps were labelled for F-actin after their enzymatic release from cap tissues,
then distinct AF networks were found (White & Sack, 1990). This latter
finding indicates that the actin cytoskeleton in root cap statocytes is capable
of rapidly assembling a more robust system if these cells are treated with cell
wall digesting enzymes which, thereby, change the cellular tensegrity system
(Ingber, 1997; Chicurel et al., 1998). A powerful tool for visualization of the
plant actin cytoskeleton has been developed using a Green Fluorescence
Protein (GFP)-talin construct which visualizes even actin oligomers (Kost et
al., 1998; Kost et al., this volume). Using this in vivo approach, dense
meshworks of presumably oligomeric AFs are implicated around sedimented
statoliths (Mathur Jaideep, personal communication).

Concerning the motor molecule myosin, essential information is
relatively rare for higher plants. Using heterologous antibodies against
myosin II from chicken muscle, prominent labelling was localized in close
vicinity to statoliths of cress root statocytes (Wunsch & Volkmann, 1993;
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compare also Fig. 1). Similar observations have been reported for statoliths
of maize root caps (Baluška & Hasenstein, 1997) and Chara rhizoids (Braun,
1996). Profilin, the actin-binding protein which is essential for the
organization of F-actin (Staiger et al., 1997; Gibbon & Staiger, this volume),
is detectable around statoliths (Fig. 1). All this suggests that dynamic actin-
based cytoskeleton surrounds the statolith envelopes being probably the
structural basis for continuous saltatory motions of statoliths even in their
sedimented state (Sack et al., 1986; for review compare Volkmann et al.,
1999).

4. STATOLITHS BEHAVIOUR UNDER
MICROGRAVITY CONDITIONS: ACTOMYOSIN
COUNTERACTS GRAVITY

Epxeriments under microgravity showed that the actual position of
statoliths in statocytes depends on two forces, the external gravitational force
and the endocellular cytoskeletal forces, both of which impinge on the
statoliths (Lorenzi & Perbal, 1990; Volkmann et al., 1991). In these
experiments, the possibility to switch from higher g levels to microgravity
has proven to be very important. Experiments investigating cress and lentil
roots (Perbal et al., 1986; Volkmann et al., 1986; Perbal & Driss-Ecole,
1989; Lorenzi & Perbal, 1990; Laurinavièius et al., 1996) indicated that
statoliths under microgravity did not show random distributions as might be
expected, but showed remarkable shifts in direction towards the proximal
statocyte pole implicating active motion of these organelles. Direct evidence
for actively driven movements of statoliths came from experiments on
rockets when, after launch accelerations of some g, gravitational conditions
changed immediately to microgravity. Under these experimental conditions,
statoliths moved in the opposite direction to the originally acting gravity
vector within a few minutes (Volkmann et al., 1991). These results were
confirmed by observations made during long term experiments (Perbal &
Driss-Ecole, 1994; Laurinavièius et al., 1996; Smith et al., 1997; for review
see Volkmann et al., 1999). Corresponding behaviour of statoliths from the
Chara rhizoid was directly observed in orbit by tele-communication
(Volkmann et al., 1991). In the presence of cytochalasin D, this motion did
not occur and statoliths remained in their launch position (Buchen et al.,
1993; for review see Sievers et al., 1996). Interestingly, one actin isoform
strongly decreased under short-term microgravity conditions (Janßen et al.,
1996).
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5. THRESHOLD VALUES AS INDICATIONS FOR
STIMULUS TRANSFORMATION IN CLOSE
VICINITY OF STATOLITH ENVELOPES

Microgravity experiments offered possibilities to study important
paramaters like threshold values under controlled conditions of sensor
physiology. For plant material cultivated entirely under microgravity
conditions, the minimum dose under continuous stimulation (presentation
time tp; for details compare Perbal et al., 1997) has been estimated to be 20–
30 g×sec for cress roots (Volkmann & Tewinkel, 1996), and by extrapolation
from microgravity data to be 27 g×sec for lentil roots (Perbal & Driss-Ecole,
1994). Correlations of this threshold value with the position of statoliths
show that these moved very slightly in the direction of the stimulating
gravity vector, generally less than 1 µm. Thus, one must conclude that
stimulus transformation occurs in close vicinity to the statolith envelopes.
On the basis of these results, it can be hypothesized that gravity perceiving
cells are transforming the gravity stimulus into endocellular signalling
pathways by cytoskeleton-mediated measuring of the actual positions of
continuously repositioning statoliths.

6. SECOND MESSENGER MOLECULES
INVOLVED IN GRAVITROPIC SIGNAL
TRANSDUCTION CHAINS

Important molecules related to signalling are second messengers like
phosphoinositides and calcium (e.g. Yang, 1996). Components of the
phosphoinositol signalling pathway have recently been investigated in maize
nodes after their gravistimulation (Perera et al., 1999). Already within 10
seconds after gravistimulation, inositol 1,4,5-trisphosphate (IP3) increases
transiently in the faster-growing lower half. Additionally, the activity of
phosphatidylinositol 4,5 bisphosphate kinase (PIP 2 kinase) increased
transiently within 10 minutes. These results indicate up-regulation of PIP2

biosynthesis during the gravisensing-graviresponding process. At the
moment, however, it is unclear to which signal transduction chain these
events are pertinent. Intriguingly, plastids are unique with respect of some
lipidic molecular species (e.g. Miège & Maréchal, 1999) which might be
relevant for signalling associated with gravisensing.

Regulation of calcium channels via cytoskeletal elements and second
messengers is becoming increasingly evident in plant signal transduction
chains (Thuleau et al., 1998). Changes of cytosolic free calcium have been
documented for Arabidopsis roots after stimulation by touch (Legué et al.,
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1997) and gravity (Davies et al., 1999). The same is true for calmodulin (see
Braam et al., 1997). Cyclopiazonic acid, specific inhibitor of ER-Ca2+-
ATPases inhibited the graviresponse of cress roots but not their growth
(Sievers & Busch, 1992). For tip-growing pollen tubes there is a general
agreement that the two second messenger molecules, calcium and IP3, are
essential for signalling-based tip growth (Franklin-Tong et al., 1996; Staiger,
2000; Vidali & Hepler, this volume).

Convincing data are accumulating that mitogen activated protein (MAP)
kinases, another typical component of signal transduction chains well known
from yeast to animals, play crucial roles in sensing of diverse environmental
factors in plants (Yang, 1996; Bögre et al., 1996) For instance, in alfalfa
leaves, MMK4 MAP kinase becomes activated within 1 minute already after
2 s of mechanical stimulation, (Bögre et al., 1996). MAP kinases have been
identified as universal multipurpose signalling tools performing important
functions, among others, as mediators of mechanosensitive responses (e.g.
Heberle-Bors & Hirt, 1994; Bögre et al., 1996; Hirt, 1997; Jonak et al.,
1999). However, the crucial question remains again open; to which of the
signal transduction chains these molecules are related and how they interact
with the cytoskeleton.

7. ROLE OF MUTANTS IN DISSECTING AND
EXPLORATING GRAVITY-RELATED SIGNAL
TRANSDUCTION CHAINS

Recent genetical evidence for participation of cytoskeletal elements in
gravisensing came from an Arabidopsis mutant showing altered response to
gravity (ARG, Sedbrook et al., 1999; Rosen et al., 1999). The authors found
that the ARG1 locus encodes for a 45 kDa protein (DnaJ-like protein)
containing a coiled-coil region homologous to coiled-coils found in
cytoskeleton-interacting proteins. Interestingly, this gene is expressed in all
plant organs investigated so far and the encoded protein is related to a
conserved molecule involved in signal transduction in Caenorhabditis
elegans. Therefore, ARG1 gene might code for a phylogenetically primitive
component of the signal transduction chains associated with the process of
gravity sensing in plants (for evolutionary considerations compare Barlow,
1995). The authors (Rosen et al., 1999) do, however, not exclude a more
general role of the DnaJ-like protein. For instance, it might be a component
of macromolecular chaperone complexes having direct impacts on protein
folding, trafficking, and degradation; but only indirect effects on
gravisensing signal transduction processes. A number of agravitropic
mutants are related to auxin physiology suggesting a global role of these
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genes in graviresponses (Chen et al., 1998; Luschnig et al., 1998; Godbolé et
al., 1999; Marchant et al., 1999) but their involvement in the gravisensing is
unclear. In this respect mutants of the PIN family dissecting the auxin
transport mechanisms and pathways (e.g. Müller et al., 1998; Palme &
Gälweiler, 1999) are becoming highly important.

The recent view of plasmodesmata as gateable channels (Ding, 1998;
Overall et al., this volume), including the plasmodesmal localization of
molecules like actin (White et al., 1994; Baluška et al., this volume), myosin
VIII (Reichelt et al., 1999; Reichelt & Kendrick-Jones, this volume),
epitopes reactive to heterologous myosin II antibody (Radford & White,
1998), and ER-based calreticulin (Baluška et al., 1999), sheds some light on
the intercellular signal transmission. Interestingly, root cap statocytes lack
myosin VIII and calreticulin at their plasmodesmata but these molecules can
by recruited there during plasmolysis (Baluška & Volkmann, in preparation).
The possible relevance of this phenomenon for the root cap gravisensing
remains to be explored.

8. CONCLUSIONS AND OUTLOOK

If we accept the starch statolith hypothesis, then it must be concluded that
the transformation of gravity stimulus, i.e. gravisensing, has to occur in a
close vicinity to the statolith envelopes which are surrounded by a highly
dynamic cytoskeletal network based putatively on oligomeric F-actin. First
evidences emerge that metabolites of the phosphatidylinositol pathway are
involved in the gravity-related signal transduction chains. In addition,
mechanosensation of gravity might be tightly linked to those MAP kinases
which are activated via mechanical stimuli. All this calls for more intensive
investigations of interactions among components of the actin cytoskeleton,
diverse phosphoinositide signalling molecules, calcium, and MAP kinases.
These complex investigations might include the following approaches:
— identification of functional actin isovariants of the highly diverse plant
actin gene family (Meagher et al., 1999; this volume);
— identification of additional relevant cytoskeletal elements of plants, like
actin-related proteins (Arps), which are critical organizers of the actin
dynamics (Machesky & Gould, 1999). The Arp2 gene has already been
identified in Arabidopsis genome (Klahre & Chua, 1999);
— testing the amyloplast-based statoliths as putative excitable organelles
capable of generating and conveying calcium signals; and their envelopes as
suitable assembly sites of protein complexes performing gravity perception:
putative gravisensing signalosome (for conserved COP9 signalosome see
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e.g. Freilich et al., 1999; Mundt et al., 1999; for signalplex in relation to the
phototransduction cascade see Montell 1999);
— exploration of possible participation of dynamic plastid stroma-filled
tubules (stromules) which are abundant around chlorophyll-free plastids of
roots (Köhler et al., 1997; Köhler & Hanson, 2000);
— selection of mutants which are directly dissecting gravity-related signal
transduction chains.
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