Structural aspects of bulge formation during root hair initiation
Čiamporová M, Dekánková K, Hanáčková Z, Peters P, Ovečka M, Baluška F
Plant and Soil 255, 1-7 (2003)
 
Using light and electron microscopy, the early stages of root hair initiation were investigated under control conditions and in a situation where F-actin polymerization was effectively inhibited by latrunculin B. Trichoblasts in their early stage of bulge formation possessed large vacuole traversed by cytoplasmic strands and enclosed within a narrow peripheral layer of cytoplasm. The nucleus was settled at the inner periclinal cell wall, typically opposite the site of bulge formation.Within the bulging area, dense cytoplasm and numerous ER elements, and other organelles were accumulated, together with pleiomorphic membrane-bound structures, the identity and nature of which will require further studies. These unusual structures, which were associated with the outer cell wall, containedmaterial similar to that of the cell wall. Similar cell wall-like bodies were observed also in the cytoplasm and sometimes within vacuoles. The possible role of these novel organelles of plant cells in cell wall thinning/degradation or in the turgor pressure maintenance are discussed. Latrunculin B treatment allowed bulge formation but prevented the switch from the slow and diffuse expansion of bulge into the rapid tip-growth characteristic of the emerging root hair. Moreover, the cytoplasm of the bulging domain became extensively vacuolated and lacked abundant ER elements and other organelles including the membrane-bound structures. These results indicate important roles of F-actin in the switch from diffuse to highly polarized tip growth.