Motile plant cell body: a ‘bug‘ within a ‘cage‘
Baluška F, Volkmann D, Barlow PW
Trends Plant Sci 6, 104-111 (2001)
 
Analysis of the cytoskeleton in morphogenetically active plant cells allows us to propose a unified concept for the structural organization of eukaryotic cells. Their cytoarchitecture is determined by two principal structural complexes: nucleus-microtubule-based cell bodies ('bugs') and plasma-membrane-F-actin-based cell periphery complexes ('cages'). There are dynamic interactions between each of these entities in response to extracellular and intracellular signals. In the case of the cell body, these signals determine its polarization, rotation and migration. Interactions between cell body and cell periphery complexes determine cell growth polarity and morphogenesis throughout the eukaryotic kingdom. Analysis of the cytoskeleton in morphogenetically active plant cells allows us to propose a unified concept for the structural organization of eukaryotic cells. Their cytoarchitecture is determined by two principal structural complexes: nucleus-microtubule-based cell bodies ('bugs') and plasma-membrane-F-actin-based cell periphery complexes ('cages'). There are dynamic interactions between each of these entities in response to extracellular and intracellular signals. In the case of the cell body, these signals determine its polarization, rotation and migration. Interactions between cell body and cell periphery complexes determine cell growth polarity and morphogenesis throughout the eukaryotic kingdom. Analysis of the cytoskeleton in morphogenetically active plant cells allows us to propose a unified concept for the structural organization of eukaryotic cells. Their cytoarchitecture is determined by two principal structural complexes: nucleus-microtubule-based cell bodies ('bugs') and plasma-membrane-F-actin-based cell periphery complexes ('cages'). There are dynamic interactions between each of these entities in response to extracellular and intracellular signals. In the case of the cell body, these signals determine its polarization, rotation and migration. Interactions between cell body and cell periphery complexes determine cell growth polarity and morphogenesis throughout the eukaryotic kingdom.